Posts

Showing posts from November, 2020

Cell therapy

Image
Cell therapy (also called cellular therapy, cell transplantation, or cytotherapy ) is a therapy in which viable cells are injected, grafted or implanted into a patient in order to effectuate a medicinal effect, for example, by transplanting T-cells capable of fighting cancer cells via cell-mediated immunity in the course of immunotherapy, or grafting stem cells to regenerate diseased tissues. Cell therapy originated in the nineteenth century when scientists experimented by injecting animal material in an attempt to prevent and treat illness. Although such attempts produced no positive benefit, further research found in the mid twentieth century that human cells could be used to help prevent the human body rejecting transplanted organs, leading in time to successful bone marrow transplantation as has become common practice in treatment for patients that have compromised bone marrow after disease, infection, radiation or chemotherapy. In recent decades, however, stem cell and cell tran

Background

Image
Cell therapy can be defined as therapy in which cellular material is injected or otherwise transplanted into a patient. The origins of cell therapy can perhaps be traced to the nineteenth century, when Charles-Édouard Brown-Séquard (1817–1894) injected animal testicle extracts in an attempt to stop the effects of aging. In 1931 Paul Niehans (1882–1971) – who has been called the inventor of cell therapy – attempted to cure a patient by injecting material from calf embryos. Niehans claimed to have treated many people for cancer using this technique, though his claims have never been validated by research. In 1953 researchers found that laboratory animals could be helped not to reject organ transplants by pre-inoculating them with cells from donor animals; in 1968, in Minnesota, the first successful human bone marrow transplantation took place. In more recent work, cell encapsulation is pursued as a means to shield therapeutic cells from the host immune response. Recent work includes micr

Mechanisms of action

Cell therapy is targeted at many clinical indications in multiple organs and by several modes of cell delivery. Accordingly, the specific mechanisms of action involved in the therapies are wide-ranging. However, there are two main principles by which cells facilitate therapeutic action: Stem, progenitor, or mature cell engraftment, differentiation, and long term replacement of damaged tissue. In this paradigm multipotent or unipotent cells differentiate into a specific cell type in the lab or after reaching the site of injury (via local or systemic administration). These cells then integrate into the site of injury, replacing damaged tissue, and thus facilitate improved function of the organ or tissue. An example of this is the use of cells to replace cardiomyocytes after myocardial infarction, to facilitate angiogenesis in ischemic limb disease, or the production of cartilage matrix in intervertebral disc degeneration. Cells that have the capacity to release soluble factors such as c

Cell therapy strategies

Allogeneic Cell Therapy edit In allogeneic cell therapy the donor is a different person to the recipient of the cells. In pharmaceutical manufacturing, the allogenic methodology is promising because unmatched allogenic therapies can form the basis of "off the shelf" products. There is research interest in attempting to develop such products to treat conditions including Crohn's disease and a variety of vascular conditions. Autologous Cell Therapy edit In autologous cell therapy, cells are transplanted that are derived from the patients own tissues. Multiple clinical studies are ongoing that obtain stromal cells from bone-marrow, adipose tissue, or peripheral blood to be transplanted at sites of injury or stress; which is being actively explored for e.g. cartilage and muscle repair. It could also involve the isolation of matured cells from diseased tissues, to be later re-implanted at the same or neighboring tissues; a strategy being assessed in clinical trials for e.g.

Types of cells

Human embryonic stem cells edit Research into human embryonic stem cells is controversial, and regulation varies from country to country, with some countries banning it outright. Nevertheless, these cells are being investigated as the basis for a number of therapeutic applications, including possible treatments for diabetes and Parkinson's disease. Neural Stem Cell Therapy edit Neural stem cells (NSCs) are the subject of ongoing research for possible therapeutic applications, for example for treating a number of neurological disorders such as Parkinson's disease and Huntington's disease. Mesenchymal Stem Cell Therapy edit MSCs are immunomodulatory, multipotent and fast proliferating and these unique capabilities mean they can be used for a wide range of treatments including immune-modulatory therapy, bone and cartilage regeneration, myocardium regeneration and the treatment of Hurler syndrome, a skeletal and neurological disorder. Researchers have demonstrated the use of MS

Alternative medicine

In alternative medicine, cell therapy is defined as the injection of non-human cellular animal material in an attempt to treat illness. Quackwatch labels this as "senseless", since "cells from the organs of one species cannot replace the cells from the organs of other species" and because a number of serious adverse effects have been reported. Of this alternative, animal-based form of cell therapy, the American Cancer Society say: "Available scientific evidence does not support claims that cell therapy is effective in treating cancer or any other disease. It may in fact be lethal ...".

Manufacturing

Despite being one of the fast growing areas within Life Sciences, the manufacturing of cell therapy products is largely hindered by small scale batches and labour-intensive processes. A number of manufacturers are turning to automated methods of production, eliminating human involvement and risk of human error. Automated methods of cell therapy manufacturing have opened up larger scale production of higher quality products at lower cost.